Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification
نویسندگان
چکیده
منابع مشابه
Skin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks
Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...
متن کاملA Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and Classification
In this study, a multi-task deep neural network is proposed for skin lesion analysis. The proposed multi-task learning model solves different tasks (e.g., lesion segmentation and two independent binary lesion classifications) at the same time by exploiting commonalities and differences across tasks. This results in improved learning efficiency and potential prediction accuracy for the task-spec...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولHierarchical Multi-label Classification using Fully Associative Ensemble Learning
Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural information between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers the structural information embedded in the class hierarchy, and uses it to improve classification performance. In this paper, we propose a local hierarchical ensemble framework fo...
متن کاملLearning Multi-scale Representations for Material Classification
The recent progress in sparse coding and deep learning has made unsupervised feature learning methods a strong competitor to hand-crafted descriptors. In computer vision, success stories of learned features have been predominantly reported for object recognition tasks. In this paper, we investigate if and how feature learning can be used for material recognition. We propose two strategies to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods and Programs in Biomedicine
سال: 2020
ISSN: 0169-2607
DOI: 10.1016/j.cmpb.2020.105475